
CS106B Handout 16
Fall 2020 February 4, 2020

Preparing for the Exam

The CS106B midterm exam is coming up soon. It will be held on Tuesday, February 11th from
7:00PM – 10:00PM, with locations divvied up by last (family) name:

• A – L: Go to Cubberley Auditorium

• M – V: Go to Bishop Auditorium.

• W – Z: Go to 320-105.

The exam will be three hours long. It's closed-book, closed-computer, and limited-note. You can
bring a single, double-sided, 8.5” × 11” sheet of notes with you when you take the exam. We've seen
all sorts of notes sheets in the past. Some students choose to write down important code patterns
and idioms. Others include sample code from their assignments so that they can use them as a refer-
ence. We've even seen sheets of paper covered in inspirational messages. Do whatever works best
for you – the whole point of the notes sheet is to be useful! We will provide you a reference sheet
containing basic syntax of how to use different container types (Handout 10, “Container Syntax Ref-
erence”) at the exam itself, so you don’t need to copy that information down.

The topic coverage for the exam is the material from Lectures 00 – 09 (basic C++ up through but
not including recursive backtracking) and the material from Assignment 0 through Assignment 3,
inclusive. Notice that you are responsible both for the material from lectures and from the assign-
ments, so you should be prepared to answer questions about topics that came up purely on the cod-
ing assignments (say, using the debugger, memoization, structs, etc.). Topics from later in the
course (recursive backtracking, big-O notation, and onward) will not be tested. We will not test you
on anything that appears purely in the section handouts or purely in the textbook, though those are
excellent resources to draw from when studying.

In terms of the exam format – you should expect the exam to (probably) be four to six questions
long, with a mix of short answer questions, multiple-choice questions, and coding questions.

2 / 4

Coding on Exams

During the exam, you will be asked to write code without having the ability to run it. This is a funda-
mentally different experience than writing code in Qt Creator. Specifically:

• You will not have a compiler that can point out syntax errors.

• You can’t run the code, tweak it, and revise it until it works.

• You can’t step through your code in a debugger.

This means that the process by which you’ll need to problem-solve is different. You’ll need to map out
where you’re going a bit more than what you’re used to doing in Qt Creator, and you’ll need to be com-
fortable switching from a high-level idea to something more concrete. Additionally, you’ll need to be
more detail-oriented than when you’re using Qt Creator, since there isn’t going to be a compiler to catch
your errors for you.

The flip side of this is that we won’t be evaluating your code using the standard of “does it compile, run,
and work flawlessly?” If we did that, chances are most people would get zero points because a single mis-
placed brace or stray semicolon would derail everything. Instead, we’ll be asking questions like these:

• Do you demonstrate a solid command of the C++ syntax we’ve covered so far?

• Do the approaches you’ve taken to the demonstrate a good understanding of the problem-solving
strategies we’ve talked about so far?

• Is your code well-structured in a way that shows a facility with breaking larger problems down
into smaller pieces?

• etc.

So, for example, a single missed semicolon or something like that is probably not going to lead to any
point deductions, but using the wrong recursive strategy in a recursion problem or the wrong container
type in a question on collections would be a more serious concern.

In the context of an exam, we won’t be grading for style at the same level as what we’d be looking for on
the assignments – we understand that we’re essentially grading a first draft. However, you should still aim
to make your code easy to read. For example:

• Please use descriptive variable and function names. Single-letter variable names (or worse, single-
letter function names) make it significantly harder to understand your code.

• Please properly indent your code. This is especially important in the event that you forget curly
braces somewhere and we need to make an educated guess as to what you intended to do.

• If possible, give comments demarcating the different parts of your code. This isn’t required, but if
you have anything you think is really gnarly, it never hurts to add a comment explaining what you
were trying to do!

There are a few details we don’t care about, so let’s save you some time:

• You don’t need to add #include statements at the top of your code. Assume they’re all there.

• You don’t need to write function prototypes. You have more important things to worry about. 😃

3 / 4

Preparing for the Exam

There are a number of ways that you can prepare for this upcoming exam. Here is our recommendation
of what you should do to get into the best shape that you can.

1. Redo the assignments. When you’re first working on the coding assignments, you’re simultane-
ously trying to figure out what the assignment is asking you to do, solidifying your understanding
of the content from lecture, tinkering around to see what happens, and figuring out the necessary
problem-solving techniques. That’s fine, and that’s normal. What matters, though, is that, in that
process, you internalized the appropriate techniques and developed your coding and problem-solv-
ing skills.

If you have the time to do so, pick one or two of the most challenging programming questions we
asked you to solve, download a fresh copy of the starter files, and solve the same problem again
without referencing your overall solution. If you’re able to do so with a little trial and error, great!
It means that you’ve gotten out of that assignment what we expected you to get out of that assign-
ment. On the other hand, if you’re struggling on the assignment a second time, there’s a good
chance that some key skill or technique hasn’t yet clicked for you, and it’s worth talking to your
SL or stopping by the LaIR to talk through the ideas.

If you worked with a partner, it’s doubly valuable to attempt the problems a second time on your
own, just to make sure that you personally are comfortable taking on the questions and that you
weren’t leaning too much on your partner for insights.

2. Work through the section problems. The problems we give out in the section handouts each week
are a great way to practice specific skills. Want to sharpen your recursion skills? Look at Section
Handout 3 or Section Handout 4. Want to shore up your C++ fundamentals? Look at Section
Handout 1 and Section Handout 2.

When you’re working through those problems, don’t just hand-write things and call it a day. You’ll
want to make sure that you actually got things working. So download a blank set of starter files
from the course website, type up your solution, and try running it on some sample test cases. If
things work, great! If not, try debugging your code and see if you can fix it. If you’re still stuck, no
worries! That’s a great indicator that you should ping your SL or drop by the LaIR to get some
help.

3. Review IG feedback and make sure you understand it completely and unambiguously. We hold
interactive grading sessions on the assignments for a good reason – it’s a chance for someone with
more coding experience than you (your section leader) to offer their advice and insights about how
you can do a better job in the future. If you haven’t yet done so, take some time to review the
feedback you received. If there are suggestions of the form “try doing it this way next time,” take
a few minutes and actually go do it the other way. If there are stylistic points that they’ve pointed
out to you, great! Go patch up your code to meet those style guidelines.

And hey, what should you do if you find something that you don’t understand? Ping your SL and
ask for some clarification!

4. Keep the SLs in the loop. As you're studying, please take the initiative to ask us questions when
you have them. If you're not sure about how or why a certain piece of code works, or why a cer-
tain piece of code doesn't work, or why a certain concept works a certain way, etc., go on Piazza
or stop by the LaIR and ask us a question. If you worked through any practice problems (section
handouts or practice exams), ask your section leader to review your answers and offer polite but
honest feedback on how you did and what you need to work on. You can also visit office hours if
you’d like!

4 / 4

Exam Policies

We want to be transparent about our grading philosophy for exams and our exam policies. Here's a quick
rundown of some of the frequently asked questions about CS106B exams.

• Do you give partial credit? We do award partial credit on the exams for answers that are on the
right track but contain errors. Because you're allowed to bring a notes sheet with you to the exam,
we generally do not award partial credit for answers that just consist of a lot of code copied from
lecture, section handouts, etc. The best way to earn partial credit on the problem is to make a
good effort to solve it, and to do so in a way that shows you understand the underlying methodol-
ogy we’ve been teaching.

• Can I write more than one answer to a problem? No, please do not do this. if you start writing
out an answer to a problem and realize that it is incorrect, please cross it off so that we don't acci-
dentally grade it. If you put down multiple answers to a question, we will grade whichever answer
gives you the fewest number of points. This policy is in place to prevent “shotgunning” down mul-
tiple answers with the hope that one of them will work.

• Is pseudocode okay? We generally discourage people from writing pseudocode on an exam. It is
better to just write real C++ code, or to at least outline in C++ what you would be doing. You
should not expect to receive much, if any, partial credit for writing pseudocode.

Good luck on the exam!

	Coding on Exams
	During the exam, you will be asked to write code without having the ability to run it. This is a fundamentally different experience than writing code in Qt Creator. Specifically:
	You will not have a compiler that can point out syntax errors.
	You can’t run the code, tweak it, and revise it until it works.
	You can’t step through your code in a debugger.
	This means that the process by which you’ll need to problem-solve is different. You’ll need to map out where you’re going a bit more than what you’re used to doing in Qt Creator, and you’ll need to be comfortable switching from a high-level idea to something more concrete. Additionally, you’ll need to be more detail-oriented than when you’re using Qt Creator, since there isn’t going to be a compiler to catch your errors for you.
	The flip side of this is that we won’t be evaluating your code using the standard of “does it compile, run, and work flawlessly?” If we did that, chances are most people would get zero points because a single misplaced brace or stray semicolon would derail everything. Instead, we’ll be asking questions like these:
	Do you demonstrate a solid command of the C++ syntax we’ve covered so far?
	Do the approaches you’ve taken to the demonstrate a good understanding of the problem-solving strategies we’ve talked about so far?
	Is your code well-structured in a way that shows a facility with breaking larger problems down into smaller pieces?
	etc.
	So, for example, a single missed semicolon or something like that is probably not going to lead to any point deductions, but using the wrong recursive strategy in a recursion problem or the wrong container type in a question on collections would be a more serious concern.
	In the context of an exam, we won’t be grading for style at the same level as what we’d be looking for on the assignments – we understand that we’re essentially grading a first draft. However, you should still aim to make your code easy to read. For example:
	Please use descriptive variable and function names. Single-letter variable names (or worse, single-letter function names) make it significantly harder to understand your code.
	Please properly indent your code. This is especially important in the event that you forget curly braces somewhere and we need to make an educated guess as to what you intended to do.
	If possible, give comments demarcating the different parts of your code. This isn’t required, but if you have anything you think is really gnarly, it never hurts to add a comment explaining what you were trying to do!
	There are a few details we don’t care about, so let’s save you some time:
	You don’t need to add #include statements at the top of your code. Assume they’re all there.
	You don’t need to write function prototypes. You have more important things to worry about. 😃
	Preparing for the Exam
	Exam Policies

